

AIM-65 VISIBLE MEMORY SUPPORT PACKAGE

The goal of this software package is to give the AIM~65 owner full access to
the capabilities of the Visible Memory graphic display board both through AIM-65
BASIC and AIM-65 machine language. Additionally we have provided software '"hooks"
for the Visible Memory Screen Print program (K-1009-1) which will provide a print-
out of the screen image on the AIM-65 printer dot-for-dot with no printer modifi-
cations required. Use of this package will give the AIM-65 graphics capabilities
unmatched by any of the packaged computers on the market.

All of the software contained herein (except the BASIC demonstration program)
will run on a 4K AIM (6 additional 2114 RAM chips installed). However we suggest
additional memory for the maximum utilization of BASIC with the Visible Memory.
In particular, our K-1016 16K memory will expand the amount of memory usable for
BASIC programs by a factor of nearly 13 over that available on a 4K AIM. The
BASIC interface program is supplied assembled for both 4K and 20K AIM's although
only the 20K listing is available.

The enclosed cassette has the following programs recorded on it in AIM-65 format
with a gap length of 08 except BDEMO which has a gap length of 24.

NAME ADDRESSES DESCRIPTION
1, SWIRL 0200-059B Swirl demonstration program, entry at 0200, 0222
2. VLIFE 0200-05E0 Life demonstration program, entry at 0200
- 3. BAS20 4772-4FFF BASIC interface program for 20K AIM, see text for
entry points.
4. BASO4 0772-0FFF BASIC interface program for 4K AIM, see text for
entry points. ;
5. BDEMO - Demonstration program in BASIC. Will not load on a
4K AIM. See text and listing.
6. SDTXT 0B69-0FFF Simplified display text subroutine, entry at OB69.
7. GRAPH 0682-0FFF Full display text and graphics routines. See text

and appendix for entry points.

Please read the description of each program for loading and running instruc-
tions. All programs have been tested and many of them have been successfully used
on the KIM-1 for over two years. Any remaining bugs should be subtle and we would
appreciate hearing about those that the customer finds. Please include a complete
description of the conditions that cause the bug to appear and document the bug if
possible with AIM printouts, etc.

Since the high speed AIM-65 tape format is somewhat more sensitive to cassette
recorder differences than KIM-1 format, it may be necessary to try more than one
cassette recorder or experiment with the head alignment. It is suggested that a
local copy be made of each program the first time it is successfully loaded to
protect against loss and tape degradation. Place the enclosed copyright label on
the backup tape. Unreadable cassettes will be replaced but since they will be
recorded on the same machine, the only variable will be tape dropouts.

1

RUNNING THE SWIRL DEMONSTRATION

Swirl is a demonstration program writtem in 6502 machine language that gener-—
ates a variety of interesting spiral and spiderweb like patterms on the screen.
Two parameters determine the appearance of the pattern and a third either includes
or suppresses lines connecting the computed points. The user may set these para-
meters manually and then have a single pattern computed and held or another
routine may be invoked which uses a random number generator to select the
parameters thus giving an endless series of different patterns.

The program is based on the differential equation for a circle which tends
toward an elipse when evaluated digitally a point at a time. As the calculation
proceeds, the radius of the circle decreases until it is essentially zerc. Since
the calculation is point by point, the visual effect on the display can be consi-
derably different from a simple inward spiral.

One may also think of the algorithm as a digital damped sine wave generator or
ultimately a digital bandpass filter. The algorithm works on two variables, SIN
and COS, which relate to the sine and cosine of an angle. Basically, the program
takes the current values of SIN and COS and computes new values of both wunder the
control of two comnstants. Each time a new SIN,COS pair is computed, it is treated
as an X,Y pair and plotted on the Visible Memory screen. Straight lines may or
may not connect successive points; both give distinctive patterns.

Two constants control the program, FREQ and DAMP which, of course, relate to
the damped sine wave nature of the algorithm. FREQ is a double precisionm, signed
binary fraction. The larger its value, the fewer points per revolution of the
circle and therefore the higher the frequency. The relationship between FREQ and
points per cycle is roughly linear. A value of +.999% (7FFF14) gives 6 points per
cyecle, +.5 (400014) gives about 12, and so forth. Negative values of FREQ cause
the spiral to rotate clockwise rather than counterclockwise. DAMP is also a
double precision signed binary fraction but it must be positive for proper opera-
tion. If it is negative, the oscillation will build up instead of dying out until
the fixed point arithmetic routines overflow creating a random display. Normal
values of DAMP are very close to 1.0 and the useful range is from approximately
7000 to 7FFF. Smaller values of DAMP produce so few points before the circle
collapses to zero that the resulting pattern is diffuse and uninteresting. Note
that all double precision values are stored with the least significant byte at the
lower address, i.e., backwards like addresses im the 6502.

To run the program, first load it into AIM memory from the enclosed cassette.
The file name is SWIRL and it loads from 0200 to 059B. Page zero locations from
0000 to O02E are also used for temporary storage as well as a few stack locatioms.
The remainder of memory is unchanged. Before executing the program the default
address for the Visible .Memory must be changed if the user has it at an address
different from 8000-9FFF, 1If it is different, use the AIM monitor to store the
page address of the Visible Memory in location 0280.

Default values for all of the parameters have been supplied. To see the
default pattern, start execution at address 0200. This is accomplished by first
issuing the * command to the AIM and giving an answer of 0200. Then type G and a
carriage return. The screen, which was initially semi-random garbage, should be
cleared and then a spiderweb—like pattern should be gradually built up over a time
span of several seconds. It is complete when the dark area at the center of the
screen is completely filled up. The user may return to the AIM monitor by
pressing the reset button.

RUNNING SWIRL con't

In order to get a feel for the visual effect of the various parameters, first
try setting LINES (at address 0000) to 00 and then start execution at location
200C which will not set the default parameters. This time only the vertices of
the angled lines that were seen earlier are shown. Although the defalut FREQ and
DAMP parameters were chosen for an appealing display with LINES equal to 1, some
very impressive displays indeed are possible with LINES set to 00. For an
example, set FREQ to 1102 (02 into 0001 and 11 into 0002) and DAMP to 7FCO (CO
inte 0003 and 7F into 0004) and execute SWIRL again. Interrupt program execution
when the hole in the middle is completely surrounded by a couple of dot depths of
solid white. The resulting display, particularly when viewed at a distance in a
darkened room, could easily pass for an artist's conception of a Black Hole; an
astronomical object which is thought to be matter crushed out of existence by its
own gravity!

Returning to the original settings of FREQ, DAMP, and LINES, lets see the
effect of changing DAMP. Regenerate the default pattern and fix it in your mind.
Then change DAMP from 7EQ0 to 7F00. This has the effect of cutting the decay rate
of the damped sine wave in half. The visual effect is a denser display that
decays toward the center more slowly. DAMP may be further increased to 7F80,
7FC0, etc. (set 0006 to 70 to avoid overflow). As DAMP approaches 7FFF, the
density of the image becomes so great that the pattern becomes essentially solid
white and takes a long time to complete. Conversely, as DAMP is reduced to 7C00,
7800, 7000, etc., the pattern becomes sparser and eventually degrades into an
angular spiral. Try some of these values of DAMP with LINES set to zero also.

All of the preceeding patterns had very nearly 6 points per revolution of the
spiral. The vertices themselves created a spiral pattern as they overlapped and
created moire-like effects. Slight changes in FREQ can have a profound effect on
the moire aspect of the pattern without a significant effect on the number of
points per revolution. Try 7E80, 7F80, and 7FFF for FREQ to see this effect.
Many more points per revolution are possible by reducing FREQ. Reduction to 4000,
2000, 1000, and even lower will cause the vertices to become so closely spaced
that the effect of a continuous curve (within the resolution constraint of the
display) 1is created. Also note that decreasing FREQ apparently increases the
damping causing the spiral to decay after fewer revolutions than before. This
effect may be countered by increasing DAMP. For example, if FREQ was reduced in
half from, say, 3000 to 1800, then the difference between DAMP and 7FFF should
also be reduced in half, say from 7D00 to 7E80. The 1lower values of FREQ are
particularly effective with LINES set to zero. If FREQ is low enough, there will
be no visual difference between LINES=1 and LINES=0.

Some combinations of FREQ and DAMP can cause the arithmetic to overflow, that
is, SIN or COS may try to reach or exceed 1.0 in magnitude. There is no danger of
such an occurance damaging the program or wiping out memory but the resulting
pattern on the screen can be very random looking. Simultaneous high values of
FREQ and DAMP will cause the overflow situation. Reducing COSINT (locations 0005
and 0006) to 7000 will prevent the possibility of overflow but will also reduce
the image size somewhat. If FREQ is kept less than 4000 or so, COSINT may be
increased to 7E00 for a somewhat larger pattern.

Entry into RSWIRL (address 0222) will cause continuous random selection of the
parameters and computation of patterns. To insure that the "pattern complete"
test functions properly, COSINT should to set to 7000 to prevent the possibility
of overflow. The sequence of patterns will not repeat for days!

DESCRIPTION OF THE VLIFE DEMONSTRATION

This program is based on the Life cellular automaton algorithm writtem wup in
Scientific American magazine several years ago. The basic concept is that of a
rectangular array of "cells" that "live'" and "die" in discrete time "generations'.
On the Visible Memory screen, each picture element (pixel or bit position) is a
cell location. A live cell is represented as a One bit which shows as a white dot
and a dead or missing cell is represented as a Zero which leaves a black area. A
generation is the state or configuration of live cells on the screen at a point in
time. A set of rules are defined which determines, based on the configuration of
live cells in the present generation, which cells live or die in the next
generation as well as "births" of new cells where none had existed previously.

The rules of Life are simple. In fact, their very simplicity yet varied
effect is what makes Life so appealing to many people. The rules are based purely
on the eight neighbors (above, below, left of, right of, and the 4 diagonal neigh-
bors) of every cell position. To determine the next generation, the live neigh-
bors of every cell position in the life field are counted. Based on this count
and the current state of the central cell, the fate of the central cell is
determined. The rules are as follows:

A. Central cell is alive
1. 0 or 1 live neighbors, the central cell dies of starvation
2. 2 or 3 live neighbors, the central cell lives on
3. 4 or more live neighbors, the central cell dies of overcrowding

B. Central cell is not alive
1. Fewer than or more than 3 live neighbors, the central cell remains dead
2. Exactly 3 live neighbors, a birth is recorded in the central cell.

When applying these rules to determine the next generation, the present
configuration of live cells is always used. Any births or deaths are recorded
separately and do not influence events around the birth or death site until the
next generation becomes current. When programming Life, this may be accomplished
by making a copy of the Life field as the next generation is formed. In a limited
memory machine such as the AIM, buffering of lines of cells is needed to simulate
a copy of the field.

The resulting sequence of generations is completely determined by the configu-
ration of the initial colony of cells and is called a Life History. Such a
history may end in one of several ways. The colony may eventually die out
completely leaving no cells on the screen at all. This often happens after
several generations of spectacular buildup which suddenly shrink and disintegrate
after a few more. A colony may also become stable. This happens when each
succeeding generation is exactly like the previous ome. Cycles of generations are
possible as well in which a configuration may go through a cycle of two or more
differing configurations only to return to the exact same configuration for
another cycle. A variation of the cyclic pattern is one which moves accross the
screen as it cycles. Finally, a pattern may grow without limit. Initially this
was thought to be impossible wuntil a pattern that periodically emits cyclic,
traveling patterns was discovered.

RUNNING THE VLIFE DEMONSTRATION

To run the program, first load it into AIM memory from the enclosed cassette.
The file name is VLIFE and it loads from 0200 to 05E0. Page zero locations from
0000 to 0099 are also used for temporary storage as well as a few stack locationms.
The remainder of memory is unchanged. Before executing the program the address of
the Visible Memory must be specified. Using the AIM monitor, store the page
address of the Visible Memory in locatiom 0245. If the Visible Memory is
addressed at 8000, this is not necessary as an 80 has already been stored there in
the cassette program.

The Life demonstration program has a single entry point which initializes
things, draws a default initial configuration of cells, and then goes through the
life history of that configuration. At any time the sequence of generations may
be interrupted by pressing and holding the "S" key on the AIM keyboard until the
generations stop and a single dot of the display (the "graphic cursor") starts
flashing. At this point several of the keyboard keys are active which allow the
entry of user defined initial patterns.

If the reader is not familiar with the Life algorithm and some of the folklore
surrounding it, it is instructive to experiment some before executing the canned
demonstration completely (leave it as a surprise!). To do this, start the program
at 0200 using the AIM monitor and then immediately hold down the 5 key until the
graphic cursor is seen in the center of the screen. The letters "LIFE" should be
drawn, one generation of life executed, and then the cursor should be visible.
Note that the dot is off most of the time flashing on for only a short period.
This is a signal that the graphic cursor 1is covering a 'dead" cell. Press the
+ key on the AIM (do not hold the shift key down). The flashing should change such
that the dot is on most of the time. This signifies that a live cell is being
covered. Thus the "+" key is used to set a cell at the current cursor position.
Hitting the "X" key will kill the cell wunder the cursor. The graphic cursor may
be moved around by using the U key for Up, D for Down, L for Left, and R for
Right. Also the W key will Wipe out the entire screen. Finally, the G key will
Go to executing life on whatever pattern is showning on the screen at the time.
The evolution may be stopped at any time with the S key and the colony of cells
edited as desired,

Initial patterns may also be entered using the AIM monitor to write directly
into the Visible Memory. Other methods include reading the pattern from cassette
tape using the AIM monitor or generating the pattern with another program (such as
SWIRL), loading LIFE, and executing it (try ome of the checkerboards generated by
the memory test program in the Visible Memory manual). The entry point LIFE
(0265) starts the evolution process and should be used if initial patterns are
generated in any of these ways.

Try the initial patterns shown below and note their fate.

RS SRS fEEE hed

50 T
- -t j

-+
e

[it

RUNNING VLIFE con't

The patterns that evolve from those on the previous page are fundamental and
well known to every Life fan. They are so common in the result of many initial
patterns that they have been given descriptive names. See 1f you can match the
following names with the corresponding final patterns: Block, Honeyfarm, Glider,
Blinker, Beehive, Lifeboat, Rocketship, Traffic Lights.

Another interesting pastime is to note the life history (number and configu-
ration of generations before dying off, becoming stable, or becoming cyclie) of
simple lines of dots with 3, 4, 30 dots in a line. Sometimes the .
addition of a single dot in a long string can have a profound effect on the final
result. Another possibility is to trace the history of all possible configu-
rations of three live cells, & cells, 5 cells, etc. Note that the majority of the
possible configurations are redundant because of symmetry, rotation, or mirror -
images. Also, sparse initial patterns invariably die off in one or two
generations because of starvatiom. If the screen print program (K-1009-1) has
been purchased, it may be executed at any time with the AIM monitor to provide a
written record of particularly interesting Life histories. To use it, stop the
evolution with the S key and reset the AIM. Then print the screen. The evolution
may be restarted by going to 0265.

Note that initial patterns should be placed in the center of the screen to
allow maximum room for expansion of the colony. If live cells get within one cell
width of the matrix boundaries, the next generation is no longer correctly
computed. This only applies to the region where the boundary is touched, the
remainder of the screen is unaffected.

Finally, before executing the canned demonstration pattern completely, try the
very simple initial pattern shown below. As it expands and differentiates, it
will leave a litter of the fundamental patterns discussed earlier.

HEN

To execute the demonstration, simply go to 0200. An initial pattern will be
generated and the Life algorithm will be executed on it. The initial pattern
generated by DEMO may be changed by altering the table of coordinates that starts
at LIST {(0335). Note that the simplified line drawing routine that connects the
endpoints in the list is limited to horizontal, vertical, and 45 degree lines.
Other angles are not harmful but will be displayed as a 45 degree segment followed
by a 90 degree segment.

BAS04 AND BAS20 BASIC INTERFACE PROGRAMS

Of all of the programs in this package the BASIC interface program will proba-
bly be of most interest. The purpose of the BASIC interface program is two-fold,
Most importantly it gives the user an easy way to write application programs which
use high resolution graphics, particularly for complex drawings and plotting math-
ematical and other detailed curves. Text may alsoc be freely mixed in with the
graphics without the restrictions normally encountered in packaged computer sys—
tems. The second benefit of wusing this package is more convenient conversation
with the BASIC interpreter itself while entering and editing programs. The wide
(53 characters) screen will hold most BASIC statements on one line while the 22
line display format allows whole routines to be viewed at once without "having to
constantly print them out. Also, the execution of a LIST command or an executing
program may be temporarily suspended so the screen may be read and then resumed by
using two special keyboard keys. Finally, the text dis- play part of the inter-
face also works with other AIM-65 functions such as the monitor, editor, and
assembler making the overall system much easier to use. Pro— visions are made in
the software tc link to the MTU screen print program (K-1009-1) so that screen
prints can be initiated by BASIC statements and even complete program listings
with 53 character lines printed automatically.

Two versions of the interface program are supplied on the enclosed cassette.
The file called BASO4 is to be used on AIM's with only 4K of read/write memory.
BAS20 is to be wused on AIM's with 20K of contiguous memory from 0000 to 4FFF.
This 20K memory capacity may be conveniently provided by an MIU K-1016 16K memory
board. Both versions of the program provide identical functions; the only dif-
ference is the memory locations occupied. For convenience in the following
discussions. The 20K version addresses are given. For the corresponding 4K
version addresses, simply replace the first digit of the address with a zero.

BASQ4 AND BAS20 LOADING INSTRUCTIONS

1. Be sure your system has a Visible Memory and that it is working properly. When
connected to a monitor and first powered-up a random dot pattern should appear
on the screen. Note the address of the Visible Memory for use later (8000 is
recommended) .

2. Rewind the cassette and instruct the AIM to load either BASO4 for a 4K AIM or
BAS20 for a 20K AIM.

3. After successfully loading the program (and saving it on your own tape with
copyright label), start execution at one of the following addresses that match
the location of your Visible Memory:

2000 Start at 0772 (BASO04) or 4772 (BAS20)
4000 Start at 0776 (BAS04) or 4776 (BAS20)
6000 Start at 077A (BASO4) or 4774 (BAS20)
8000 Start at 077E (BASO4) or 477E (BAS20)

4. The screen should blank and the top line should indicate that a break instruc-
tion has been executed which can be ignored. Alse while this package is in
control of the AIM-65 output, vou should ignore the AIM-65 display. The prin-
ter will continue to operate normally. From now on until power is shut off or
the "PUTBAK" program is executed all AIM output will go to the screen.

LOADING INSTRUCTIONS con't
5. Type the 5 key to enter the BASIC interpreter.

6. Answer the MEMORY SIZE? question with 1905 for a 4K AIM or 18289 for a 20K
AIM. DO NOT KEY IN RETURN WITHOUT THE SIZE NUMBER OR THE INTERFACE PROGRAM
WILL BE WIPED OUT AND THE AIM WILL CRASH IN SUCH A WAY THAT POWER-OFF IS THE
ONLY WAY TO RECOVER.

7. Answer the TERMINAL WIDTH? question with 53.
8. BASIC will respond with: 1375 BYTES FREE for a 4K AIM or 17757 for a 20K AIM.

9. If you have a 20K AIM, you may then load in the demonstration program (BDEMO)
from cassette with the LOAD command (see the AIM BASIC manual). The program
listing will appear while loading but the tape record numbers will be inter-
spersed; just ignore these. If you have a 4K AIM, the demonstration program
listing elsewhere in this manual will have to be consulted and just a couple
of the demonstrations typed in at once since memory space is limited.

10. You may list the entire program by typing LIST 0-9999 and carriage return. To
temporarily stop the listing, hit the F2 key. To resume listing type F3. To
terminate the listing type Fl. These keys also function while a BASIC program
is running and producing printed output. Be careful however not to type F2
while BASIC is waiting for a command, it may crash the system.

11. Run the demonstration program by typing RUN followed by a carriage return.
The program will run for approximately 1.5 hours with a long pause between
cach demonstration so that the screen can be examined. Most of the time is
spent in the prime number mosaic demonstration. An infinite loop has been
programmed following the prime number mosiac so it will be necessary to hit Fl
to interrupt the program and return to BASIC.

BASO4 AND BAS20 TEXT DISPLAY INTERFACE

The text display routine that is now in control of your AIM can be wused with
the monitor, editor, and assembler as well as BASIC. Tt is particularly effective
with the editor since normal text and assembler source statements now have a wide
line to work with. All AIM functions should operate normally with the exception
of the tape load and dump functions which do funny things with the AIM display to
show the record number and therefore do not display properly on the screen. Tape
dump and load with BASIC works satisfactorily but when using the AIM monitor it is
recommended that the text display interface be disabled by executing PUTBAK (479E
or 079E) before doing the tape operations. If this is not done, the program will
crash 1 out of 10 times. The interface may be restored by executing the same ad-
dress used in step 3 above. WNote that when doing a tape dump with BASIC the MORE?
question is not asked and that tape writing is complete when the cursor returns to
the left of the screen a couple of lines below the string of record numbers that
will be displayed. Also note that a tape read error will exit BASIC and put you
in the AIM monitor. Type a 6 to get back to BASIC.

The interface program uses the upper invisible 192 bytes of the Visible Memory
(not affected by screen clear) and locations 0106 and 0107 for storage. In order
to preserve the information in 0106 and 0107 the fourth breakpoint address must
not be defined. This should not cause any particular hardship.

BASO4 AND BAS20 TEXT DISPLAY INTERFACE con't

If the AIM Print Package (K-1009-1) has been purchased, it can be linked with
this program (instructions in the K-1009-1 manual). When this is done a printout
of the Visible Memory may be initiated in one of two ways. One way is from a
BASIC program with the USR(10) function for a quick screen print or a USR(1l) for
a quality screen print. Another way is by setting location 0106 (262 decimal) to
a !} for quick print or 2 for quality print. Then every time the display fills up
with text (i.e., a scroll would take place), the screen is printed. Following
printing, the screen is cleared and the cursor homed to top left in preparation
for another screenful of text. Storing anything else in location 0106 restores
normal scrolling display action. This 'print flag" is active regardless of the
source of the text and is also effective with the AIM text editor. In preparation
for the first page, a control/L character may be typed to home the cursor.” To get
the last page printed, control/J characters may be entered until the print is
triggered. If the K-1009 package is not linked in, screen printing is just
ignored.

BASQ4 AND BAS20 PLOTTING ROUTINES

The graphics routines supplied with the BASIC interface are capable of rapid
clearing of the screen, plotting and erasing points, plotting and erasing vectors,
and readback of points. For plotting purposes, the Visible Memory screen consists
of an array of 200 dots high by 320 dots wide. Each dot is called a pixel and
represents one bit in the Visible Memory. If the bit is a one, the pixel shows as
a bright dot; if a zero, the pixel is black. A graphics image is formed by
selectively turning pixels on and off in the desired pattern. Although the POKE
function of BASIC could be used to create images directly according to the pro-
gramming instructions given in the Visible Memory manual, plotting would be
extremely slow. The machine language graphics routines in the BASIC interface
package perform the plotting functions hundreds of times faster and are more con-
venient to use.

An X-Y coordinate system is used to identify points on the VM screen. X and Y
must always be zero or positive which means that the entire screen appears in the
first gquadrant. The allowable range for X is 0 through 319 and the allowable
range for Y is O through 199. If coordinates outside the allowable range are
used, the graphics routines will convert them to values in the allowable range by
repeated subtraction of 320 (X) or 200 (Y). To plot, erase, or read a point, only
a single X,Y pair is needed. To plot or erase a line, two X,Y pairs are needed,
one for each endpoint. The following BASIC statements are required at the be-
ginning of every graphics BASIC program to define the USR function address and to
identify the coordinates to the machine language plotting routines:

1 POKE 4,169: POKE 5,71 (20k AIM) POKE 4,169: POKE 5,7 (4k AIM)
2 X1%=0: Y1%=0: X2%=0: Y2%=0

Using statement numbers ! and 2 insure that these statements are executed first
whenever a RUN! command is given to BASIC. This causes the USR entry into the
interface program to be defined in locations 4 and 5 and the integer variables
X1%, Y1%, X2%, and Y2% to be placed first in the variable table where the machine
language plotting routines can easily find them.

FOOTNOTE:

T 1. Use of RUN (statement number) will not work correctly because the coordinate
definition statement will not be executed. Instead the
following statement should be entered and the plain RUN
command used:

3 GOTO (statement number)
9

BASO4 AND BAS20 PLOTTING ROUTINES con't

The USR function of BASIC is used to actually call the plotting routines into
action. The argument used with the USR function determines which plotting

function is performed. These are listed below:

USR(0) Clear the screen

USR(1) Plot a white point at X1%,Yl%

USR(2) Plot a white line from X1%,Y1% to X2%,Y2%

USR(3) Erase the point at X1%,Y1%

USR(4) Erase the line running from X1%,Y1Z to X2%,Y2%

USR(5) Returns the color of the point at X1%,Y1Z black=0, white=l
USR(6) Clear cursor on screen

USR(7) Set cursor on screen

USR(8) Flip the state of the point at X1%,YIZ%

USR(9) Flip all points along the line from X1%,Y1%Z to X2%,Y2%.

USR(10) Perform a quick print of what is on the screen(requires K-1009-1)
USR(11) Perform a quality print of what is om the screen(requires K-1009-1)

Note that USR(x) is a function subprogram, not a statement. A convenient method
of using it to plot is to code the BASIC statement: 7Z=USR{x) where x is the argu-
ment corresponding to the desired plot function and Z is a dummy variable not used
for anything else, (except for USR(5) which puts the state of the pixel in Z). The
line plot and erase routines copy X2% into X1%Z and Y2% into Y1% when they execute.
This allows a chain of end-to-end lines to be plotted or erased by simply changing
X2% and Y2% for each successive endpoint after the first.

EXAMPLE PROGRAM SEGMENTS

The following program segments are examples of how the graphics routines are
used to perform fundamental plotting operations (be sure to define the coordinates
as outlined previously):

1. To clear the screen before plotting:
10 z=USR(0)
2. To plot a point at X=160 Y=100 (the center of the screen)

10 X1%=160
20 Y1%=100
30 z=USR(1)

3. To plot a line from X=20 ¥=30 to ZX=113 Y=165

10 X1%=20
20 Y1Z=30
30 X2%=113
40 Y2%=165
50 Z=USR(2)

After statement 50 is executed, X1%=X2%=113 and Y1%=Y2%Z=165.

10

EXAMPLES con't

4. To erase the point at X=180 Y=32
10 X1%=180
20 Y17%=32
30 Z=USR(3)
5. To erase a line running from X=78 Y=73 to X=13 Y=19
10 X1%2=78
20 Y1%=73
30 X2%=13
40 Y2%Z=19
50 Z=USR(4)
After statement 50 is executed, X1%=X2%=13 and Y17=Y2%Z=19.
6. To read the color of the pixel at X=100 Y=50 into the variable A
10 X1%=100
20 Y1%=50
30 z=USR(5)

7. To print the image that exists on the screen at this time (K-1009-1 required)

10 Z=USR(10) (quick print)

The demonstration program should be consulted for other examples of plotting.

BASQ4 AND BAS20 TEXT DISPLAY ROUTINE

The text display capability built into the BASIC interface package can be used
to annotate the graphic images created by the plotting routines. Normal PRINT
statements are used to create the text so the secret to successful use is posi-
tioning the text in the desired locations on the screen.

The text display routine in the package, SDTXT, keeps two variables of its own
which identify the location of the text cursor on the screen. The character num~
ber is stored im location XFE9 (where X is the first digit of the Visible Memory
address) and varies from 0 for the left screen edge to 52 decimal for the right
screen edge. The line number is kept in location XFEA and varies from 0 for the
top line to 21 decimal for the bottom line. For the Visible Memory at 8000, the
decimal addresses of the cursor are 40937 for the character number and 40938 for
the line number.

BASIC also has its own character number which is stored in location 11 (17
decimal) and ranges from 0 to 52 for a terminal width of 53. Normally BASIC's
character number and SDTXT's character number agree. Every carriage-return/
line-feed issued by BASIC sets both character numbers to zero and increments
SDTXT's line number. When the line number tries to go beyond 21 the screen
contents are scrolled upward by 9 raster lines instead.

11

BASO4 AND BAS20 TEXT DISPLAY ROUTINE con't

Putting text at arbitrary leocationms on the screen basically amounts to POKEing
the desired character and line numbers into memory at the addresses given above.
The text is then generated with print statements. The coordinates of the center
of a character at character position C and line number L are: X=6%C+2 Y=194-9%L;
Cc=(x-2)/6 1L=(194-Y)/9. Characters extend 2 pixels either side of center widthwise
and 3 pixels either side of center heightwise. A semicolon terminator should be
used after each element printed to prevent BASIC from following it with a carriage
return. Also, BASIC's character number at locationm 17. should be reset to zero
before the accumulated output exceeds 53 characters or else BASIC will insert a
carriage-return/line-feed anyway. Finally be aware that when numbers are printed
with the semicolon terminator that a blank is printed following the number and
that positive numbers are preceeded by a blank.

There is one additional complication. The cursor displayed by SDTXT is a
software cursor and arbitrarily changing the line and character numbers will foul
up its proper handling. Therefore before changing the line or character numbers,
the cursor should be cleared by executing the statement: Z=USR(6). After the line
and character numbers are changed but before any PRINT statements, the cursor
should be inserted by executing the statement: Z=USR(7). After all labels and
captions are printed, the cursor may be cleared if desired. Return to BASIC's
command mode will automatically restore the cursor for normal interactive text
output. If possible, text printing should be done before any plotting.

For example, if the caption "Market Index" is desired to start at X=70 Y=180
the following BASIC statements should be coded (if the VM starts at 8000):

10 Z=USR{(6)

20 POKE 40937,11

30 POKE 40938,2

40 POKE 17,0

50 zZ=USR(7)

60 PRINT "Market Index";

Character number 11 and line number 2 are closest to the desired starting point of
¥=70 Y=180. WNote that lower case letters are available and may be part of a
literal field with no problems (however they cannot be typed in with the AIM key-
board!). The demonstration program can be consulted for additional examples of
text output.

BASIC DEMONSTRATION PROGRAM

The BASIC demonstration program supplied with this software package is de-
signed to illustrate the use of the plotting and text display functioms. It is
intended to be easy to read and understand rather than illustrate techniques for
program compression and speed enhancement. The program is composed of five
different demonstratioms that execute in sequence with a long pause between each
demonstration. The fifth ends with an infinite loop which must be interrupted to
return to BASIC. If a 4K AIM is used, each demonstration will have to be typed in
and run individually to fit into memory.

12

BASIC DEMONSTRATION PROGRAM con't

The first program illustrates point plotting by drawing a circle with 250 in-
dividual dots. The parametric equations: X=COS(A)} and Y=SIN(A) are used to
generate X,Y pairs as a function of the variable, A. Note that scaling of X and
Y, which vary between -1 and +l, is necessary. Although it does not happen in the
demonstration, if Y became exactly 1.0 then Y1Z would become 200 which is outside
the 0-199 range of Y1Z%.

The second program illustrates vector plotting by creating a 31 point star.
Since the string of endpoints is connected, the line drawing routine's property of
updating X1% and Y1%Z from X2% and X2% values is utilized to advantage. However
the first point is a special case. To handle the first point, a variable called
FP is initially set to 1. As each new endpoint is computed, the value of FP is
interrogated. If it is found to be non-zero, the endpoints are forced to be equal
which effectively moves the '"pen" without drawing a line from where it was. After
the first point is plotted, FP is set to =zero thus allowing vectors to be drawn
between all successive points.

The third program illustrates selective erasure of previously plotted lines.
Points for the same 31 point star are computed but USR(4) is used to erase the
lines computed. Note that when two lines cross and one of them is erased that a
small gap is left in the other line. This is a fundamental problem of all stored
image {as opposed to refresh vector) graphic displays.

The fourth program illustrates how a fully labelled and captioned graph can be
produced. First the Y axis calibration labels are produced with a FOR loop and
PRINT statements. Note that if the FOR loop had been written: FOR Y=-1 TO 1 STEP
.2 that after 10 iterations Y would not be precisely 0 because of roundoff error
in decimal fraction to binary floating point conversion. Thus rather than 0 being
printed, something like -1.16415322E-10 would be printed instead. The captions
are printed next. BASIC's character number is reset to zero once to prevent a
spurious carriage-return/line-feed. Then the axes themselves are plotted with
calibration marks for the Y axis. Finally the Fourier synthesis of the sound
waveform of a particular organ pipe is plotted.

The last program demonstrates the ability to read data back from the Visible
Memory. It also shows that visualization of number sequences can lead to mnew in-
sights about the sequences. In the demonstration the Sieve of Eratosthenes is
used to plot the prime numbers from 3 to 132,001. Each pixel represents an odd
integer starting with 3 in the lower left cornmer of the screen. The sieve method
starts with all pixels set to one. Then all of the odd multiples of 3 up to
132,001 are computed and the corresponding pixels are reset to zero. Then a
search for the next pixel beyond 3 which is still a one is performed and all of
its odd multiples are set to zero and so on. This continues until 363, which is
approximately equal to the square root of 132001, is tried. At this point, pixels
remaining on the screen correspond to prime numbers. Do the prime numbers appear
to be randomly placed? Is there a decrease in prime number density as the numbers
get larger? Approximately what percentage of the odd integers are prime? The
answers to these questions are immediately apparent when viewing the screen and
may be surprising.

13

BASIC DEMONSTRATION PROGRAMS

1 POKE 4,169: POKE 5,71
2 X1%Z=0: Y1%Z=0: X2%=0: Y2%=0

3 REM PREVIOUS STATEMENTS REQUIRED TO DEFINE

4 REM GRAPHIC COORDINATES AND SET USRLOC

5 CX=40937: CY=CX+1: REM TEXT CSR ADDR FOR VM AT 8000
10 REM CLEAR THE SCREEN

11 z=USR(0)

100 REM DEMONSTRATION OF POINT PLOT

110 REM PLOT A CIRCLE IN DEAD CENTER OF SCREEN USING
120 REM 250 POINTS

130 FOR I=0 TO 250

140 A=6.28318*1/250

150 X1%=100%C0S(A)+160

160 Y1%=100*SIN(A)+100

170 z=USR(1)

180 NEXT I

190 GOSUB 9000

200 REM DEMONSTRATION OF VECTOR PLOT
210 Z=USR(0): REM CLEAR SCREEN

220 FP=1: REM SET FIRST POINT FLAG
230 FOR I=0 TO 31

240 A=13%I1%6.2831828/31

250 X2%=150*%C0OS(A)+160

260 Y2Z=100*%SIN(A)+100

270 IF FP<>1 THEN GOTO 290

280 X1Z=X2%: Y1%Z=Y2Z: FP=0

290 Z=USR(2)

300 NEXT I

310 GOSUB 9000

400 REM DEMONSTRATION OF VECTOR ERASE
410 FP=1

420 FOR I=0 TO 31

430 A=13*I*6,2831828/31
440 X27%=150*COS(A)+160

450 Y2%=100*SIN(A)+100

460 IF FPC>1 THEN GOTO 480
470 X1%=X2%: Y1%Z=Y2%: FP=0
480 Z=USR(4)

490 NEXT I

460 IF FPLD1 THEN GOTO 480
470 X1Z=X2%: Y1%=Y2%: Fp=0
480 Z=USR(4)

490 NEXT I

500 GOSUB 9000

14

BASIC DEMONSTRATION PROGRAMS

600 REM DEMONSTRATION OF AXIS PLOT, LABEL, AND TITLE
610 Z=USR(0)

620 REM INSERT Y AXIS LABELLING FIRST

630 FOR Y=-10 TO 10 STEP 2

640 REM REPOSITION TEXT CURSOR

650 Z=USR{6)

660 POKE CX,0: POKE CY,(-Y+10)

670 Z=USR(7)

680 PRINT Y/10;: REM PRINT Y AXIS LABEL

690 NEXT Y

700 REM PRINT X AXIS CAPTION

710 z=USR(6): POKE CX,49: POKE CY,10: Z=USR(7)

720 PRINT "'Time";

730 REM PRINT X AXIS CAPTION AND FIGURE CAPTION
740 Z=USR(6): POKE CX,0: POKE CY,21: Z=USR(7)

741 POKE 17,0: REM RESET BASIC'S CHAR POINTER TO 0
750 PRINT "Amplitude";

760 PRINT " Waveform of Great Diapason C4 16FT";
770 Z=USR{6)

800 REM PLOT X AND Y AXES

810 X1%=20: X2%=294: Y1%=105: Y2%=105: REM HOR AXIS
820 Z=USR(2)

830 X1%=20: X2%=20: Y1%Z=11: Y2%=199: REM VERT AXIS
840 Z=USR(2)

900 REM PLOT TIC MARKS ON Y AXIS

910 FOR Y=-1 TO 1 STEP .2

920 X1%=18: X2%=20

930 Y1%=15+90%(Y+1): Y2%=Y1Z

940 Z=USR(2)

950 NEXT Y

1000 REM PLOT THE WAVEFORM USING VECTORS

1010 FP=1

1020 XF=270/(4%3.14159): REM X SCALE FACTOR

1030 YF=60: REM Y SCALE FACTOR .

1040 FOR X=0 TO 4%3.14159 STEP 4%3,.14159/270

1050 Y=SIN(X)+.49*SIN(2#*X+3.9)+.3*SIN(3%X+5.81)
1060 Y=Y+.24*SIN(4*X+3.8)+,18%SIN(5%X+.97)

1070 Y=Y+.12%SIN(6%*X+4.3)+.04%SIN(7*X+3.54)

1080 Y=Y+.07*SIN(8%X+.87)+.03*SIN(9%*X+5.3)

1090 X2%=20+XF*X: Y2%Z=105+YF*Y

1100 IF FPC>»1 THEN GOTO 1120

1110 X1%Z=X2%: Y1%=Y2%: FP=0

1120 Z=USR(2)

1130 NEXT X

1140 GOSUB 9000

15

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2100
2110
2120
2130
2140
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
8000
8010
8020
8030
8040
8050

2000
5010
9999

BASIC DEMONSTRATION PROGRAMS con't

REM SIEVE OF ERATOSTHENES DEMONSTRATION

REM THIS PROGRAM FINDS ALL OF THE PRIME NUMBERS
REM FROM 3 TO 128001 USING THE VISIBLE MEMORY.
REM EACH PIXEL ON THE SCREEN REPRESENTS AN ODD
REM INTEGER STARTING WITH 3 IN THE LOWER LEFT
REM CORNER. THE PROGRAM FIRST TURNS ALL PIXELS
REM ON AND THEN TURNS THOSE OFF THAT DO NOT
REM REPRESENT PRIME NUMBERS. THOSE THAT ARE
REM LEFT ON AFTER EXECUTION ARE PRIME. IS THE
REM RESULTING PATTERN RANDCM? ARE THE PRIME
REM NUMBERS UNIFORMLY DISTRIBUTED? THE ABILITY
REM TO READ BACK FROM THE VISIBLE MEMORY IS
REM USED IN THIS PROGRAM.

Z=USR(0)

REM QUICKLY TURN ALL PIXELS ON

FOR I=0C T0 199

X1%=0: X2%=319: Y1%=I: Y2%=I: Z=USR(2)

NEXT I

FOR I=3 TO SQR(128001) STEP 2

N=I

GOSUB 8000

IF USR(5)=0 THEN GOTO 2300

FOR

J=3 TO 128001 STEP 2

N=I*J

IF N»>128001 THEN GOTO 2300
GOSUB 8000

Z=USR(3)

NEXT J

NEXT I

COTO 2310: REM WAIT FOREVER

REM

FUNCTION TO CONVERT ODD INTEGER TO X,Y

N1=(N-3)/2
N2=N1/320

X1%=

NI-INT(N2)*320

Y1%=N2
RETURN

REM
FOR
END

DELAY ROUTINE TO HOLD IMAGE IN SCREEN
D=1 TO 10000: NEXT D: RETURN

16

SDTXT MACHINE LANGUAGE DESCRIPTION

SDTXT stands for Simplified Display TeXT which is a highly optimized text dis-
play subroutine for the Visible Memory graphics display. Within the constraints
of structured programming technique and overall programming effort, SDTXT is
optimized for small size and fast execution speed. It is also designed to fit the
maximum practical amount of text into the 320 by 200 display matrix without
adversely affecting legibility.

SDTXT is supplied in two forms in the K-1008-5C software package The cassette
has an assembled version of the program which resides in the top part of a 4K
ATM's memory (0B69 to OFFF) and which has all of its temporary storage in page
zero at locations OOF5 to 00FF. The back part of this manual has listing of the
page zero variables and addresses of major routines which correspond to the
assembled cassette version. The K-1008-5CS is a cassette which has the source
statements for SDTXT in a form suitable for reassembly anywhere desired with the
AIM-65 assembler ROM. It is available with a signed license agreement.

Given that the SDTXT subroutine is resident in memory, either RAM or ROM, it
is as easy to generate text on the Visible Memory display as it is with a con-
ventional characters-only display. Note however that SDTXT and the Visible Memory
form an '"output only" display device as far as the actual ASCII character codes
are concerned. Although bit patterns forming the character shape are readily read
from the display memory, the actual ASCII codes cannot be retrieved (unless of
course one wishes to write a character recognition program to convert dot patterns
to ASCIT). Thus an actual text editing application would have to maintain a sepa-
rate text buffer for the ASCII codes. This is discussed in greater detail later.

The basic display format of SDIXT is 22 lines of 53 characters per line.
Although it would be nice to have a longer line, the majority of low cost
character-only displays actually have less capacity than this such as 16 lines of
32 or 40 characters. The characters themselves are formed from a 5 wide by 7 high
dot matrix. Lower case characters are represented as small capital letters in a 5
by 5 matrix. Although normal lower case with descenders is readily handled omn a
graphic display device, additional room must be allowed for the descender thus
reducing the number of possible text lines. Lower case shapes without descenders
were judged to be more difficult to read than the small caps. The 5 by 7 matrix
is positioned in a 6 wide by 9 high "window" to allow space between adjacent cha-
racters and lines. Although 25 lines could be displayed if the interline spacing
was reduced to one dot, the sacrifice in legibility was judged to be excessive.
If the user disagrees with these choices, reassembly of the subroutine with
different values (within limits) of CHHI and CHWID and a slight recoding of CSRTAD
is sufficient to change them. The character font table is also readily changed to
suit individual tastes. If the user wishes to operate in the half screen mode,
NLOC should be changed to 4096 and the program reassembled. This will cut the
number of lines displayed to 11 but leave the second 4K half of the VM free for
other uses.

SDTXT requires some RAM for parameter and temporary storage. There are three
types of storage required. Base page temporary storage must be in page zero since
the indirect addressing modes require this. Four bytes are required but they need
not be preserved between calls to SDTXT thus they may be used by other programs as
well. Four additional bytes of temporary storage may be placed anywhere and also
used by other programs. Finally, three bytes are required for the storage of
parameters. Since these hold the cursor location and the page number of the VM,
they must not be disturbed between calls to SDTXT unless the user desires to
change these parameters. Note that all of this storage has been placed at the top
of page zero in the version on the K-1008-5C cassette.

17

SDTXT MACHINE LANGUAGE DESCRIPTION con't

As given. SDTXT is about 1.2K bytes in length. This may be reduced to just
under 1K (for storage in a single 2708 PROM) if the lower case characters are
deleted from the font table. The routine is completely ROMable since it does not
modify itself but it is not reentrant due to the fixed temporary storage loca-
tions. If SDTXT is placed in ROM, a decision will have to be made about where the
temporary storage is to be placed. One possibility if it is mnot possible to
dedicate part of page 0 is to use some of the 192 invisible bytes at the top of
the Visible Memory itself. A short pre-entry routine can save the 4 bytes that
must be in page =zero on the stack when SDTXT is executing and then restore them
before returning. The BASIC interface package (BASO4 and BAS20) can be consulted
to see how this might be accomplished.

USE_OF SDIXT

Using SDTXT is exceptionally simple. The user merely loads the ASCII charac-
ter code to be displayed or control code to be interpreted into register A and
does a JSR SDTXT (location OB69 in the assembled version on cassette). The sub-
routine will then display the character at the present cursor location or do the
indicated operation and then return with all registers intact. The condition
codes will however be altered. SDTXT expects the decimal mode flag to be OFF.

It cannot be emphasized enough that VMORG must be set to the page number of
the first VM location before SDTXT is used. For example, if the VM is jumpered
for addresses 8000-9FFF, then VMORG, which 1is in location OOFF on the assembled
version on the cassette, should be 80j¢. Failure to set VMORG will change SDTXT
into MEMCLR!

It is also important that CSRX and CSRY have valid contents before any print-
able characters are sent to SDTXT. The best way to accomplish this is to give
SDTXT an ASCII FF character (0C) as the very first operation. This action not
only initializes the cursor to the top left side, it also clears the screen.
Alternatively, the user's initialization routine can simply zero CSRX (00FD) and
CSRY (0OFE) for the upper left corner.

CSRYX and CSRY hold the character and line number respectively of the present
cursor location. Numbering starts at zero thus the top line is lire 0 and the
leftmost character is character 0. SDTXT automatically moves the cursor as appro-—
priate. The user may also move the cursor anywhere at any time by directly
changing the values of CSRX and CSRY. Before this is done however, a call to
CSRCLR must be executed to clear the existing cursor from the screen. The user
then can change the cursor location. Following this, a call to CSRSET will dis-
play the cursor at its new position. CSRX must always be between 0 and 5239 and
CSRY must be between 0 and 211g inclusive. Violation of this range restriction is
not checked and can cause random storing anywhere in memory.

In the present implementation, if more characters are received than will fit
on a line the cursor simply remains at the rightmost character position on the
line rather than forcing an automatic carriage return line feed sequence. This
capability is easily added but can lead to problems in interfacing with BASIC
unless the terminal width is set to 52 rather than 53. A line feed that rums off
the bottom of the screen causes an upward scroll of the text instead with the top

line being lost.
18

USE OF SDTXT con't

Two other useful subroutines are available as part of SDTXT. FMOVE is an
extremely fast memory move subroutine that can move any number of bytes from any-
where to anywhere in memory at an average speed of 16 microseconds per byte. The
address of the first source byte should be stored in ADPI and the first
destination address should be stored 1in ADP2. A double precision move count
should be stored in DCNTl. Although A is destroyed, the index registers are
preserved. FCLR is similar except that it can quickly clear any amount of memory-.
Set up the first address to be cleared in ADP2 and a double precision count in
DCNT1 and call FCLR. X and Y registers are preserved but A is destroyed.

SDTXT LIMITATIONS

Unfortunately, even though a lot of effort was put into making SDTXT effi-
cient, it takes a finite amount of time to draw a character and move the cursor.
For normal applications, such as displaying text typed in or conversing with
BASIC, this time will never be noticed. Using the AIM and the VM to simulate a
teletype terminal however will most likely uncover limitationms in the maximum baud
rate that can be handled.

Approximately 2.68 milliseconds are required to draw a character and move the
cursor. All control characters except FF (Form-Feed which is a screen clear) and
LF (Line-Feed when it causes a scroll) take even less time. FF takes mnearly 100
milliseconds and an LF that scrolls requires about 120 MS. Ignoring these and
only considering characters it is easily determined that the absolute maximum baud
rate that can be handled is a little more than 3600 baud. This rate can be
closely approached if a standard UART (such as provided on a K-1012 PROM/IO board)
is wused for the serial communication. If the timed loop (software UART) serial
routines in the AIM monitor are used then only the stop bit duration is available
for character generation. This would limit the rate to 300 baud with one stop bit
or 600 baud with two stop bits.

Fven with a UART, simple one-track programming would only allow 110 baud if LF
and FF characters are to be received. Many terminal systems do allow one or more
nulls to be sent after such control characters which would directly affect the
maximum rate possible without dropping characters, Three nulls would allow opera-
tion at 300 baud and 6 would be good for 600 baud. If instead the UART is
connected as an interrupting device and a short first-in-first-out queue is pro-
grammed, baud rates approaching the theorectical maximum could be handled without
the need for extra nulls. In any case the maximum communication speed is highly
application dependent.

As mentioned earlier, a text editing application of the VM with SDTXT would
require a separate text buffer to hold the ASCII representations of the characters
displayed. The most straightforward method of handling this would be to write a
text buffer subroutine that parallels the operation of SDTXT except with ASCII
codes in an ASCII text buffer. Every character handled would then be given to
both routines which would do the same thing with their respective character repre-
sentations. When text is to be read back or stored onm a mass storage device, the
ASCIT text buffer could then be read to retrieve the ASCII codes.

If the editing functions of the built-in AIM editor are sufficient, then use
of the BAS04 or BAS20 program is recommended. These are described elsewhere in

this manual.
19

THE GRAPHICS SUPPORT SUBROUTINE PACKAGE

This package combines in one program all of the low level graphic and charac-
ter drawing functions needed for most applications. Point plotting, line drawing,
and character and text display are all provided. For the most part, structured
programming discipline and ease of understanding of the code were emphasized more
than absolute minimum code size or peak performance. WNevertheless a lot of func-
tion has been packed into the 2.4K bytes required by the complete package. Since
the programming is modular, unused routines may simply be omitted to reduce the
size for specific applications. For example, deleting the "windowed" text display
routine will save about 1K. Removing all character display functions will cut the
size to less than 1K. Using SDTXT {(simplified display text) instead of DTEXT will
give a total package size of less than 2K or two 2708 type PROM's.

Although the best way to use the graphics support routines is to assemble the
ones needed with the user's application program, the pre-assembled version on
cassette has been organized so that unwanted routines can simply be ignored. The
assembled package has been divided into three "tiers" of routines. Tier 1 gives
all of the graphics, character drawing, and text display functions and needs the
full 2.4K (0682-0FFF). Tier 2 omits the text display routine but retains indi-
vidual character display and all of the graphics functions and thus needs only
1.6K (09C2-0FFF). Tier 3 gives only graphics functions and thus is smaller still
at .6K (ODAB-OFFF). Operating at the tier 1 level requires the entire program
code from 0682 to OFFF. When operating at the tier 2 level, the tier 1 routines
(0682-09C1) may be overwritten by the user program. When operating at the tier 3
level, both tier 1 and 2 routines (0682-0DA7) may be overwritten.

Some RAM storage is required by the routines in this package. Four bytes of
temporary storage must be located on the base page for use as address pointers.
An additional 13 bytes of temporary storage may be located anywhere else. All
temporary storage may be used by other programs between calls to the graphic
support routines. Finally, 17 bytes of permanent storage for parameters are re-
quired. These may not be disturbed between calls wunless the user wants to
specifically change them. The pre-assembled version on cassette places all
temporary and permanent storage at the end of page 0 (locations O0ODE-00FF) .

SIGNIFICANCE OF THE PARAMETERS

Information to most of the graphics routines 1is passed via parameters in
memory rather than in the registers. VMORG (OOFF in the pre-assembled cassette
version) is the most important parameter. It should be set to the first page
number of the Visible Memory before ANY of the graphics routines are called. For
example, if the VM is jumpered for addresses 8000 - 9FFF then VMORG should be set
to 80j5. Once set it will nmever be changed by any of these routines. Failure to

set VMORG will usually cause total program wipeout.

Most graphic routines use one or two sets of coordinates. XI1CORD and YI1CORD
(00F7 and OO0F9) define one set of coordinates and X2CORD and Y2CORD (O0OFB and
00FD) define another set. All coordinate values are double precision and must
always be positive. The double precision representation is with the least signi-
ficant byte first (lower address) just 1like memory addresses in the 6502.
Furthermore all coordinate values must be in the proper range. This means that X
must be between 0 and 319 inclusive and Y must be between 0 and 199 inclusive
(decimal numbers). Although Y never exceeds one byte in size, consistency and
future compatibility with even higher resolution displays requires that Y be
double precision also. Since both X and Y are positive, all coordinates are in
the first quadrant.

20

SIGNIFICANCE OF THE PARAMETERS con't

Out of range coordinates can cause random storing anywhere in AIM memory. A
verification routine is included that can be used in the checkout of an applica-
tion program to prevent erroneous coordinate values and subsequent program
destruction. A call to CKCRD1 (ODAB) will verify and correct if mnecessary XICORD
and Y1CORD. A call to CKCRDZ (ODCl) will check and correct X2CORD and Y2CORD.
Correction, if necessary, is accomplished by subtracting the maximum allowable
value of a coordinate until an in range result is obtained. The check routines do
not alter any of the registers thus allowing calls to them to be inserted anywhere

without problems.

If the text display routine (DTEXT, O069E) is used, the text margins (TMAR,
BMAR, LMAR, and RMAR; OOEF, O0O0FI, O0F3, 00F5) must be defined. These margin
settings are double precision numbers and are the actual coordinates of the mar-
gin. Thus a right margin 3/4 of the way accross the screen would be set to 240
decimal which is an EO in location CO0F5 and a 00 in location 00F6. Text may be
written up to and including the margins but will not be written outside of the
margins. By suitable manipulation of the margins, multiple, independent blocks of
text may be displayed and manipulated on the screen simultaneously. Note that no
checking for validity of the margins is performed. TMAR must be greater than BMAR
and RMAR must be greater than LMAR. Further, the difference between the margins
must be large enough to fit at least 1 line of 2 characters between them and if
scrolling is triggered, a minimum of two lines must fit.

USE OF THE GRAPHIGC POINT PLOT ROUTINES

All of the point oriented routines work with the point defined by
X1CORD,Y1CORD. All of the point routines preserve the X and Y index registers and
do not change either pair of coordinates. The term "pixel" is wused frequently.
Pixel is a contracted form of “picture element" which is simply a dot on the dis-
play or a bit in the Visible Memory. The routines available are as follows:

STPIX (OE78) - Sets the pixel at X1CORD,YICORD to a one (white dot)

CLPIX (OE8B) - Clears the pixel at X1CORD,YICORD to zero (black dot)

FLPIX (OE9EQ - Changes the state of the pixel at X1CORD,YICORD from black to
white or white to black

WRPIX (OEB1) - Stores bit O of the accumulator into the pixel at XICORD,Y1CORD

RDPIX (OEC2) - Copies the state of the pixel at X1CORD,YICORD into all bits of
the accumulator

An internal subroutine frequently used by other routines in this package is
PIXADR (OElE). Tts purpose is to convert an X,Y coordinate into a VM memory
address and a bit number. When called, XI1CORD,YICORD is converted -intoc an
address. The address is stored in ADP1 (OOEB) and the bit number is stored in
BTPT (OODE). Note that for the purpose of this routine that bit 0 is leftmost in
a byte. Either of the indirect addressing modes on the 6502 may then be wused to
access the designated VM byte and the normal logical AND and OR instructions may
be used to select the indicated bit. Mask tables MSKT! and MSKI2 can be conve-
niently used as bit selection masks when indexed by the contents of BTPT.

21

USE OF THE LINE DRAWING ROUTINE

The line drawing routine, DRAW (OEEF)} is very similar to the point plotting
routines. Basically a line is drawn from the point defined by XI1CORD,YICORD to
the point defined by X2CORD,Y2CORD. The line may be any length and at any angle
and the routine will determine the best possible series of pixels to turn on be-
tween the endpoints. An iterative algorithm that requires no multiplications or
divisons is utilized. The index registers are preserved but XICORD is set equal
to X2CORD and YICORD is set equal to Y2CORD before the routine returns. If the
two sets of coordinates are already equal, the line becomes a single point.

ERASE (OEEB) is exactly like DRAW except that a black line is drawn between
the endpoints. ERASE may be used to selectively erase a line that was previously
drawn without having to clear the entire screen and regenerate the image. Note
however that if a line that crosses other lines is erased a small gap will be left
in the lines that it crossed.

USE OF THE CHARACTER DRAWING ROUTINES

DCHAR (0AlF) can be used to draw an ASCII character anywhere on the screen.
X1CORD,Y1CORD determines where the character is drawn by specifying the location
of the upper left corner of the character. The ASCII code of the character should
be in the accumulator when DCHAR is called. The £full 96 character set is
supported and standard lower case shapes with descenders are used for lower case
characters. ASCII control codes are completely 1ignored and DCHAR returns from
subroutine immediately if one is received. The normal character baseline is 7
pixels below YICORD but lower case characters with descenders go as far down as 9
pixels. In any case, a 5 wide by 9 high rectangle is cleared and then a character
is drawn into the space. The index registers and coordinates are preserved.

DTEXT (069E) is a much more sophisticated text display routine than SDIXT.
Major differences are a cursor that works in terms of X and Y graphic coordinates,
user defined margins for the text, and the ability to display superscripts and
subscripts. A virtual 'page" is defined by the margins. The ASCII FF control
character for example only clears the display area defined by the margins. Verti-
cal scrolling triggered by LF only scrolls between the margins. Control codes are
defined for cursor movement by whole lines and characters in & directions or the
user may directly position the cursor using the same technique as described for
SDTXT (except that the cursor positionm is in X and Y coordinates, not line and
character numbers). I and SO control characters effect a 3 pixel baselipne shift
up and down respectively for super and subscripts.

DTEXT is called just like SDTXT. X1CORD and Y1CORD define the cursor loca-
tion. These may be conveniently initialized to the wupper left corner of the
virtual page by giving an ASCII FF character to DTEXT before outputting any text.
The cursor is then automatically moved when characters are displayed. DIXTIN
(0682) is a convenience routine that sets the margins for full screen operation,
clears the screen and sets the cursor to the upper left corner. With a full
screen, DTEXT can display 18 linmes of 53 characters. The appendix at the back of
this manual gives a summary of the ASCII control codes recognized by DTEXT.

When calls to DTEXT are intermingled with calls to the graphic routines,
CSRINS (08D7) and CSRDEL (08DB) should be called to insert and delete the cursor
respectively. Likewise these routines should be used when the user program di-
rectly modifies the cursor position by changing XICORD and YI1CORD. If this is not
done, the cursor symbol may not show until the first character has been drawn or

may remain at the last character drawn.
22

APPENDIX

Because of the great bulk involved and relatively light demand for them, the
assembled listings for the programs in this package are not included in the stan-
dard manual. Instead, the following appendix gives a listing of all of the page
zero storage for each of the programs and the address and description of each
major routine in each program. For those who wish to have the complete printed
assembly listing of each program for modification purposes should order the
K-1008-5L which is approximately $25.00 and requires signing and returning a non-
disclosure form.

For customers who wish to incorporate SDTXT, DTEXT, or the graphics routines
in an application program, the source code for these is available on cassette in a
form acceptable to the AIM-65 assembler. Order the K-1008-5CS package which is
$20.00 and requires signing a non-disclosure statement. Please note that this is
little more than a cassette and assembly instructions; the standard K-1008-5C
package is still needed to effectively use the results. Also note that making
multiple copies of these routines, whether reassembled or not, for sale or use on
multiple machines is in violation of the copyright. Anyone wishing to license
this software should contact MTU for details.

SWIRL
Page Zero Storage
0000 LINES Lines connect dots if non-zero
0001 FREQ Double precision frequency value, low byte first
0003 DAMP Double precision damping factor, low byte first
0005 COSINT Initial value of calculated cosine, double precision
0007 COS Calculated cosine value (X coordinate of point)
0009 SIN Calculated sine value (Y coordinate of point)
000B VMORG Page number of first Visible Memory location
000C RANDNO Seed for random number, double precision, must not be 0
000E ADP1 Temporary address pointer used by graphics routines
0010 ADP2 Temporary address pointer used by graphics routines
0012 XICORD X coordinate number 1, initial endpoint
0014 YICORD Y coordinate number 1, initial endpoint
0016 X2CORD X coordinate number 2, final endpoint
0018 Y2CGRD Y coordinate number 2, final endpoint
001B - 0025 Temporary storage for graphics routines
0027 PROD Product area for math routines, quad precision, LSB first
MPLR Multiplier is lower 2 bytes before multiplication
002B MPCD Multiplicand for math routines, double precision
002D MPSAVE 2 bytes temporary storage for math routines
Major Routines
0200 SWIRLI Initialize and display canned demo entry point
020C SWIRL Display swirl with user specified parameters entry point
0222 RSWIRL Swirl with randomly selected parameters entry point
026A INPRMS 7 bytes which is canned demo parameters, mirror of 0-6
0271 SWINIT Initialize routine to set SIN, COS, clear screen, set VMORG
028D SCALE Scale SIN and COS and put into X2CORD and Y2CORD
02D4 POINT Compute next CO0S,SIN values from current values and FREQ
and DAMP parameters, difference equation for circle used.
0331 C2T0C1 Move X2CORD to X1CORD and Y2CORD to Y1CORD
0342 PIXADR Compute byte and bit address of point at X1CORD,Y1CORD
029¢C STPIX Sets pixel at X1CORD,YICORD
03AF CLEAR Clears display memory
03D1 DRAW Draws line from X1CORD,YICORD to X2CORD,Y2CORD

23

04DA
0508
0544
0560
057A

Page Zero Storage

0000
0001

0002
0003

0004
0005
0007
0009
000A
000C
000E
0010
0012
0014
0016
0020

SGNMPY
UNSMPY
RAND

RNDEXP
RANGCK

VMORG
NCYSV
LSTKEY
NCNT
DBCNT
LNCNT
REALST
NGEN
ADP1
ADP2
BTPT
X1CORD
Y1CORD
X2CORD
Y2CORD
TEMP
FLASHC
MSK-1

4Yajor Routines

0200
0244
0265
028C
0296
02DA

033F

035C
0368
0385

03DF
03F0
0403
040B

0411
0417
0440
0480

0512
05B%

DEMO
INIT
LIFE
LIFE3
LFBUF
NCNTC

ROLL

PRIME
CLEAR
PIXADR

STPIX
CLPIX
WRPIX
CSRINS

CSRDEL

RDPIX
SDRAW

LIST

KYPT
SCNKEY

SWIRL Major Routines con't

Signed multiply of MPLR by MPCD, product in PRCD

Unsigned multiply of MPLR by MPCD, product in PROD

Uniformly distributed random number generator, result in A
Exponentially distributed random number genmerator, rslt in A
Range check of random FREQ and DAMP parameters

VLIFE

Page number of first Visible Memory location
Temporary storage for NCNTC

Last key number seen pressed on the AIM keyboard
Count of live neighbors

ATIM keyboard debounce counter

Cell line counter

State of cell under graphic cursor

Byte used to accumulate new cells

Temporary address pointer

Temporary address pointer

Bit number within a Visible Memory byte

X coordinate number 1, initial endpoint

Y coordinate number 1, initial endpoint

X coordinate number 2, final endpoint

Y coordinate number 2, final endpoint

Temporary storage, 2 bytes

Time delay counter for cursor flash

Table of 10 masks for cell selection in a byte
Storage to buffer 3 scan lines of cells, 122 bytes

Draws a figure defined by LIST and then goes to LIFE
Initialize VMORG, mask table, and life buffers

Execute lLife on Visible Memory contents endlessly

Test if the "S" key is pressed on the AIM keyboard
Computes next genmeration of 320 cells in middle buffer
Counts neighbors of cell addressed by Y=byte, X=bit in
middle buffer

Rolls a scan line from the VM, through the buffers, and
back to the VM

Primes the 3 buffers to get started

Clear the display memory

Computes byte address in ADP1 and bit number in BTPT of
¥1CORD,Y1CORD

Sets a pixel at X1CORD,YICORD

Clears a pixel at X1CORD,Y1CORD

Writes bit O of A at X1CORD,Y1CORD

Insert graphic cursor at X1CORD,Y1CORD and save pixel in
REALST

Delete graphic cursor at XI1CORD,Y1CORD and restore pixel
Read pixel at X1CORD,YICORD into all of A

Simplified DRAW from X1CORD,YICORD to X2CORD,Y2CORD only
horizontal, vertical, and 45 degree lines allowed

List of coordinates for initial cell colony, coordinate
pairs connected by lines if X has MSB on

Wait for keyboard entry to control setting cells

Scan AIM keyboarg4and return with key ID in A, =80 if none

BAS20 BASIC INTERFACE

Page Zero Storage (This is kept at the end of the Visible Memory except during
actual execution. Addresses given assume the VM at 8000)

9FE4 00E0 ADP1 Address pointer 1
9FE6 (Q0E2 ADP2 Address pointer 2
9FE8 00E4 CURP2 Copy of AIM-65 cursor pointer
9FE9 (Q0E5 CSRX Text cursor character number
9FEA 00E6 CSRY Text cursor line number]
9FEB Q0E7 XICORD X coordinate number 1, initial endpoint
9FED (00E9 YICORD Y coordinate number 1, initial endpoint
9FEF 00EB X2CORD X coordinate number 2, final endpoint
9FF1 00ED YZ2CORD Y coordinate number 2, final endpoint
9FF3 00EF TEMP Temporary storage, 2 bytes

DCNT1
9FF4 00F1 BTPT Bit number within a byte
9FF5- 00F2- Temporary storage for line draw
9FFF 0OFB

Permanent storage

0106 PRIFLG Print flag to auto print when the screen fills up
0107 VMORG Page address of VM set by INITx routine
Major Routines (BAS20 assumed, for BASO4, first hex digit of address is 0)

4772 INIT2 Initialization entry point for Visible Memory at 2000-3FFF

4776 INIT4 Initialization entry point for Visible Memory at 4000-5FFF

477A INIT6 Initialization entry point for Visible Memory at 6000-7FFF

477E INITS8 Initialization entry point for Visible Memory at 8000-9FFF

479E PUTBAK Restore normal AIM-65 operation entry point

47A9 DISPCH USR function in BASIC goes here, deciphers the argument

4813 DSPTAB Dispatch table of action addresses for USR arguments 0-11

482B TVOUT ATIM monitor goes here to print characters

48CA POSWAP Swap page 0 OOE0-00FB with end of Visible Memory whose page
address is kept in location 0107

4928 CLEAR Clear Visible Memory screen routine

493F PIXADR Computes byte address in ADPl and bit number in BTPT of
X1CORD,Y1CORD

4994 STPIX Sets a pixel at X1CORD,Y1CORD

49A9 CLPIX Clears a pixel at X1CORD,Y1CORD

49B8 FLPIX Flips the pixel at X1CORD,Y1CORD

49C7 WRPIX Writes into X1CORD,YI1CORD according to Acc., 0=off, 1=on,
2=flip

49CF RDPIX Read pixel at X1CORD,YICORD into all of Acc.

49F0 CKCRD Check and correct if needed XI1CORD, Y1CORD, XZCORD, Y2CORD

4A2F ERASE Erase line between X1CORD,Y1CORD and X2CORD,Y2CORD

4A33 DRAW Draw line between X1CORD,Y1CORD and X2CORD,Y2CORD

4A37 FLIP Flip line between XICORD,YICORD and X2CORD,Y2CORD

4B40 SDTXT Display character at cursor position and move cursor
CR, LF, FF, BS recognized

4B8F = Jump if cursor against right edge of screen

4BAC SDTXCR Carriage return processor

4BB6 SDTXCL Backspace processor

4BC4 SDTXFF Form-feed (clear screen and home cursor) processor

4BDO SDTXLF Line feed processor

4LBE7 = Link to quick screen print

4BEE i Link to quality screen print

25

4C42
4C4D
4069
4CAF
4D16
4D42
4D60

ige Zero Storage

00F5
Q0F6
0OF8
00F9
00FB
00FD
O0FE
00FF

CSRSET
CSRCLR
CSRTAD
CKCUSR
FMOVE
FCLR
CHTB

BTPT
DCNTI
MRGT1
ADP1
ADP2
CSRX
CSRY
VMORG

2jor Routines

0B69
0BBS
0BC2
0BD5
OBDF
0BED
0c09
0C62
0C6A
0C85
0ccA

0D16
0D42
0D60

SDTXT

SDTIX10
SPTXCR
SDTXCL
SDTXFF
SDTXLF
CSRSET
CSRCLR
CSRTAD
MERGE

FMOVE
FCLR
CHTB

BAS20 Major Routines con't

Display a cursor at the cursor position

Clear the cursor at the cursor position

Compute byte and bit address of upper left corner of char.
Check and correct if necessary CSRX and CSRY

Fast memory move, ADPl=source, ADP2=dest, DCNTl=byte count
Fast memory clear, ADP2=address, DCNTl=byte count

Font table, 7 bytes per character, starts with ASCII blank

SDTXT ROUTINES

Bit number within Visible Memory byte

Double precision counter

Temporary storage for graphic merge function
Address pointer 1

Address pointer 2

Cursor position, character number

Cursor position, line number

First page number of Visible Memory

Main text display entry point, character to display in Acc.
Jump if cursor against right edge of screen

Control character interpreter

Carriage return processor

Backspace processor

Form-feed (clear screen and home curser) processor

Line feed processor

Display a cursor at the cursor position

Clear the cursor at the cursor position

Compute byte and bit address of upper left corner of char.
Merge a row of 5 dots with VM starting at byte address in
ADP2 and bit number in BTPT. 5 dots to merge left justified
in Acc.

Fast memory move, ADPl=source, ADP2=dest, DCNTl=byte count
Fast memory clear, ADP2=address, DCNTl=byte count

Font table, 7 bytes per character, starts with ASCII blank

26

Page Zero Storage

O0ODE
00DF -~
00EB
OOED
OQEF
00F1
00F3
00F5
00F7
00F9
00FB
00FD
00FF

BTPT
00EA
ADP1
ADP2
TMAR
BMAR
LMAR
RMAR
X1CORD
Y1CORD
X2CORD
Y2CORD
VMORG

Major Routines

0682

069E
06C9
06D2
06D8
06DE
06E4
06EA
06FE
0712
0723
07BC
07D8
0831

088B
089E
08B1
08C4
08D7
08FC
0913
0924
0941
0958
0976
099¢C

DTXTIN

DTEXT
DTEXT3
CRR
CRL
CRU
CRD
BASUP
BASDN
CARRET
LNFED
FMFED
LNCLR
RECTP

DNTST
UPTST
LFTST
RTTST
CSRINS
CSRR
CSRL
CSRU
CSRD
CCTAB
MERGEL
MERGER

GRAPHIC ROUTINES

Bit number within a Visible Memory byte
Temporary storage for line drawing routines and DTEXT
Address pointer 1

Address pointer 2

Y coordinate of top margin for DTEXT

Y coordinate of bottom margin for DTEXT
X coordinate of left margin for DTEXT

X coordinate of right margin for DTEXT
X coordinate number 1, initial endpoint
Y coordinate number 1, initial endpoint
X coordinate number 2, final endpoint

Y coordinate number 2, final endpoint
Page address of Visible Memory

*% Tier] routines *¥

Initialize margins for full screen, clear screen, home
cursor for DTEXT

Main display text entry point, ASCII character in A
Vector jump routine for control code interpreter

Move cursor right in respomse to ASCII DC2Z

Move cursor left in response to ASCII DCl

Move cursor up in response to ASCII DC3

Move cursor down in response to ASCII DC4

Baseline up 3 scan lines in response to ASCII SI

Baseline down 3 scan lines in response to ASCII SO
Carriage return (cursor to left edge) in response to CR
Line feed (cursor down with scroll) in response to LF
Form feed (clear screen & home cursor) in response to FF
Clear VM inside the margins routine)
Establish useful data about the margins to simplify limit
checking (in temporary storage CODF-QOEA)

Test if cursor can go down, A negative if not

Test if cursor can go up, A negative if not

Test if cursor can go left, A negative if not

Test if cursor can go right, A negative if not

Insert a text cursor at XI1CORD,Y1CORD

Cursor right, do nothing if against right margin

Cursor left, do nothing if against left margin

Cursor up, do nothing if against top margin

Cursor down, do nothing if against bottom margin

Control character dispatch table

Merge left A with VM at ADP1,BTPT, bits to left preserved
Merge right A with VM at ADP1,BTPT, bits to right preservec

27

09C2 MERGES

09FE -

0AIF DCHAR

0A97 CHTB

0D97 SADPZL

0D9C DNISCN

0DA8 CKCRDI

ODC1 CKCRD2

ODFE CLEAR

OEIE PIXADR

0E78 STPIX

OE8B CLPIX

OE9E FLPIX

OEBl WRPIX

OEC2 RDPIX

OEEB ERASE

OEEF DRAW
ASCII

HEX SYMBOL

0D CR

0A LF

08 BS

oc FF

OF ST

OE S0

11 pcl

12 DC2

13 DC3

14 DC4

GRAPHIC Major Routines con't

*% Tier 2 routines *¥%

Merge 5 dots left just in A with VM at ADP],BTPT

Merge bit pattern tables

Draw character upper left corner at XICORD,YICORD, char in
Acc.

Font table, 8 bytes per shape, sign bit of first byte
specifies 2 scan line descender

Shift ADP2 left one bit

Double add 40 to ADP!

** Tier 3 routines *¥

Check and correct if necessary XICORD and Y1CORD

Check and correct if necessary X2CORD and Y2CORD

Clear Visible Memory screen

Compute address of pixel at X1CORD,Y1CORD into ADP1 and BTPT
Sets a pixel at XI1CORD,YICORD

Clears a pixel at X1CORD,YICORD

Flips the pixel at X1CORD,Y1CORD

Writes into X1CORD,YICORD the least significant bit of A
Read pixel at X1CORD,Y1CORD into all of A

Erase line between X1CORD,YICORD and X2CORD,Y2CORD

Draw line between X1CORD,YICORD and X2CORD,Y2ZCORD

SUMMARY OF ASCII CONTROL CODES RECOGNIZED BY DTEXT

Carriage return, sets cursor to left margin

Line feed, moves cursor down 1, if at bottom margin, scroll
up instead

Backspace, same as cursor left

Form-feed, clear screen, home cursor in upper left cormer
Shift in, move baseline up 3 scan lines for superscripts
Shift out, move baseline down 3 scan lines for subscripts
Move cursor left one character, nothing if at left margin
Move cursor right one character, nothing if at right margin
Move cursor up one line, nothing if at top margin

Move cursor down one line, nothing if at bottom margin

28

